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Vanadium-containing large pore molecular sieves (SiN ratios above 150) have been synthesized; changes in unit cell 
volume, IR data and catalytic activity in the oxidation of rn-xylene and naphthalene indicate that vanadium is 
incorporated in framework positions. 

The activity and selectivity of vanadium-containing catalysts 
in oxidation reactions depend on the local structural environ- 
ment around vanadium.1 Vanadium-incorporated molecular 
sieves are a new class of catalysts with interesting properties in 
a number of oxidation reactions of hydrocarbons.24 So far, 
only three vanadium-containing molecular sieves are known 
and well characterized.5-10 Two are metallosilicates and 
belong to the medium-pore pentasil family (V-MFIS-8 and 
V-MEL,9 respectively). The third (VAPO-5) is a metallo- 
phosphate . lo  The vanadium silicate molecular sieves are 
catalytically active in the hydroxylation of phenol, oxyfunc- 
tionalization of n-alkanes, cycloalkanes and toluene with 
aqueous H2029J1J2 as well as the oxidative dehydrogenation 
of C3 and C4 hydrocarbons.4.X Recently, we have synthesized 
and characterized a new large pore zeolite designated as 
NCL-1 with an Si/Al ratio of 220 and its Al-free silica 
polymorph.13 The adsorption and catalytic properties of 
NCL-1 are characteristic of zeolites with pore openings 
constituted by 12-membered tetrahedra. The effective pore 
diameter of NCL-1 (from adsorption and diffusivity measure- 
ments) is close to that of mordenite (ca. 0.7 nm).l3 We report 
here our preliminary results on the synthesis and characteriza- 
tion of V-NCL-1, the first vanadium-containing large pore 
molecular sieve. V-NCL-1 is also active in the oxidation of a 
number of bulky hydrocarbon molecules. 

The hydrothermal synthesis of vanadium silicate was 
carried out using gels of the following molar compositions: 

Si02: xV02 : 0.075 Na20 : 0.05 RBr2 : 52 H20 

wnere x = 0.005 /, 0.0104 and 0.0208 and RBr2 is the organic 
tempfate. 

In a typical synthesis, fumed silica (Sigma, USA, S-5005) 
was dissolved in NaOH solution with stirring for 1 h, after 
which an aqueous solution of vanadyl sulfate was added. This 
mixture was stirred for 1 h and then the organic template, 
hexamethylenebis(triethy1ammonium bromide) was added. 
The homogeneous reaction mixture was stirred for 2 h, 

28 I O 

Fig. 1 X-Ray powder diffraction profiles of (a )  silica polymorph of 
NCL-1 and (b )  V-NCL-1B sample. Data collected on a Rigaku Max 
I11 VC instrument using Ni-filtered Cu-Ka radiation. 
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charged into a stainless steel autoclave and heated at 443 K for 
15 days with rotation at 60 rpm. After crystallization, the 
product was filtered, washed with deionised water, dried at 
383 K and calcined at 723 K. The product yield was between 90 
and 95 wt%. Three such V-NCL-1 samples with Si/V input 
ratios of 48, 96 and 175 (samples A, B and C) were prepared 
and characterized by X-ray powder diffraction (XRD), and IR 
and ESR spectral techniques. 

The XRD profiles of the three V-NCL-1 samples match well 
with that of the V-free silica polymorph NCL-1 (Fig. 1). The 

Table 1 Properties of V-NCL-1 samples 

N2 Unit cell 
SiN SIN in adsorbed, volume, 

Sample ingel product vlmlg-l U/A3 

V-NCL-1A 48 150 - 2927 
V-NCL-1B 96 250 71.4 2904 
V-NCL-1C 175 400 70.0 2879 
NCL-1 silica polymorph - - 77.9 2867 

- 
Fig. 2 ESR spectra of as-synthesized V-NCL-1A (a) and V-NCL-1B 
(b)  samples. Spectra recorded at room temperature on a Bruker ER 
200D spectrometer. 

Table 2 Oxidation of m-xylenea 

XRD patterns are novel, the principal lines being at d = 1.435, 
1.195, 1.098, 0.418, 0.396 and 0.356 nm, re~pective1y.l~ 
NCL-1 and the corresponding vanadium analogues have a 
novel (as yet not fully known) structure. No peaks other than 
those ascribable to the silica polymorph NCL-1 structure are 
observed in V-NCL-1 samples. Table 1 shows the physico- 
chemical properties of V-NCL-1 samples and the silica 
polymorph of NCL-1. If vanadium is located within the 
framework, the unit cell should increase, as observed in the 
case of V-MEL.9 The orthorhombic unit cell volumes of the 
samples show, indeed, an increase with increasing vanadium 
content (Table 1). The N2 adsorption isotherms of V-NCL-I 
samples are characteristic of rnicroporous materials. The 
amount of N2 adsorbed at 77 K and atplpo = 0.01 are given in 
Table 1. Their surface areas were around 350 m2 g -1. 

The probable framework location of V in the NCL-1 
structure is suggested from the observation of an IR band at 
around 960 cm-1 for V-NCL-1 samples. Vanadium-free 
samples of NCL-1 as well as those wherein vanadium was 
deposited on the silica polymorph of NCL-1 do not exhibit this 
band. Similar observations made in the case of titanium 
silicates (TS-1 , TS-2 and Ti-ZSM-48)14 and vanadium silicates 
(V-MFI and V-MEL)6>9 have been attributed to Si-0-Ti (or 
V) vibrations, when Ti (or V) would probably be in the 
framework positions. 

The ESR spectra of the as-synthesized V-NCL-1 samples 
(Fig. 2) exhibit anisotropic and eight equally spaced hyperfine 
splittings indicating the presence of paramagnetic, atomically 
dispersed and immobile V4+ ions. The g tensors and the A 
parameters calculated from the spectra (gli = 1.929; g, = 
1.973; Ail = 197 G; A,  = 72 G; 1 G = 10-4 T) identify the 
vanadium as most probably being in the framework positions 
of the NCL-1 structure.7.9.15 The relative intensities of the 
ESR signals [curves (a)  and ( b )  of samples V-NCL-1A and 
V-NCL-1B , respectively] are also roughly proportional to 
their vanadium concentrations. 

The catalytic activity of V-NCL-1 samples in the oxidation 
of rn-xylene by H202  is illustrated in Table 2. The product 
distribution shows that side-chain oxidation is preferred to 
aromatic ring hydroxylation. 3-Methylbenzyl alcohol and its 
secondary oxidation product , 3-methylbenzaldehyde, are the 
predominant products (66.4%). 2,6-, 2,4- and 3S-dimethyl- 
phenols in total constitute only about 15.5% in the product. 
The oxyfunctionalization of side-chain carbon atoms appears 
to be a characteristic feature of vanadium silicates, as 
observed in the case of toluene oxidation in the presence of 
V-MEL catalysts. 12 Titanium-containing molecular sieves, on 
the other hand, oxidise the aromatic carbon atom giving rise to 
phenols only.16 The pure silica polymorph, NCL-1, is inactive 
under the same conditions. Even the silica polymorph of 
NCL-1 impregnated with vanadium (equal in quantity to that 
in V-NCL-1A) exhibits only negligible activity (Table 2). 
Larger molecules like naphthalene are also found to be 
oxidised (by V-NCL-1B, ca. 10.0 wt.% conversion) to 
naphthols, naphthoquinones and phthalic anhydride (with 
selectivities of 50, 20 and 30 wt% , respectively) under similar 
conditions. 

Sample 

Product distribution, wt. % 
m-Xylene 
conversion, 3-Methylbenzyl 3-methylbenz- 
wt.% alcohol aldehyde 2,6-DMPb 2,4-DMP 3,5-DMP Othersc 

V-NCL- 1 (B) 9.2 34.3 32.1 6.4 6.9 2.2 18.1 
V-impregnated silica 

polymorph of NCL-1 0.5 ndd 60.0 nd nd nd 40.0 

fl Conditions: catalyst, 0.1 g; reactant, 1 g; solvent, acetonitrile, 10 g; reactant/H202 = 2.3 mol/mol; T ,  353 K; reaction time = 24 h. 
b DMP = Dimethylphenol. c Others = heavier, high boiling products. nd: not detected. 
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